Abstract

    Open Access Research Article Article ID: IJASFT-8-267

    Review on comparative genome mapping in crop improvement

    Zewdu Asrat* and Mastewal Gojjam

    Comparative genomics is the study of the similarities and differences in the structure and function of hereditary information across taxa. The objective of this study was to highlight the role of comparative mapping in crop improvement. Hence, the study encompasses comparative genomics over the past two decades, multiple investigations of many additional taxa have delivered two broad messages: multiple investigations of many additional taxa have delivered two broad messages: In most plants, the evolution of the small but essential portion of the genome that actually encodes the organism’s genes has proceeded relatively slowly; as a result, taxa that have been reproductively isolated for millions of years have retained recognizable intragenic DNA sequences as well as similar arrangements of genes along the chromosomes. A wide range of factors, such as ancient chromosomal or segmental duplications, mobility of DNA sequences, gene deletion, and localized rearrangements, has been superimposed on the relatively slow tempo of chromosomal evolution. Comparative genomics is the study of the similarities and differences in the structure and function of hereditary information across taxa. The objective of this study was to highlight the role of comparative mapping in crop improvement. Hence, the study encompasses comparative genomics over the past two decades, multiple investigations of many additional taxa have delivered two broad messages: multiple investigations of many additional taxa have delivered two broad messages: In most plants, the evolution of the small but essential portion of the genome that actually encodes the organism’s genes has proceeded relatively slowly; as a result, taxa that have been reproductively isolated for millions of years have retained recognizable intragenic DNA sequences as well as similar arrangements of genes along the chromosomes. A wide range of factors, such as ancient chromosomal or segmental duplications, mobility of DNA sequences, gene deletion, and localized rearrangements, has been superimposed on the relatively slow tempo of chromosomal evolution.

    Keywords:

    Published on: Aug 8, 2022 Pages: 218-224

    Full Text PDF Full Text HTML DOI: 10.17352/2455-815X.000167
    CrossMark Publons Harvard Library HOLLIS Search IT Semantic Scholar Get Citation Base Search Scilit OAI-PMH ResearchGate Academic Microsoft GrowKudos Universite de Paris UW Libraries SJSU King Library SJSU King Library NUS Library McGill DET KGL BIBLiOTEK JCU Discovery Universidad De Lima WorldCat VU on WorldCat

    Indexing/Archiving

    Pinterest on IJASFT