Abstract

    Open Access Research Article Article ID: JGRO-6-185

    Novel therapy for COVID-19 does intravenous ozonated-saline affect blood and tissue oxygenation?

    Thorp JA*, Hollonbeck SA, Viglione DD, Green PC, Hodge JR, Tamburro JA, Tran TN and Glassman DS

    Introduction: Adjunctive ozone therapy for COVID-19 is being used successfully in China, Spain, Italy, and South America. One proposed mechanism is by improving blood / tissue oxygenation thus averting multiorgan system failure due to hypoxia. The purpose of this study was to determine if ozonated-saline administered intravenously affects the oxygenation and duration of time spent in a hypoxia chamber.


    Materials and methods: This was a prospective pilot study that used one volunteer who underwent seven experiments. Each included two runs in a hypoxia chamber that resulted in symptomatic oxygen desaturation. One subject was used as his own control in the hypoxia chamber before and after infusion of intravenous ozonated-saline in four paired experiments.Another 3 experiments were performed identically except ozone was not administered. The primary outcome was to test the null hypothesis that ozonated-saline infusion does not affect oxygenation.


    Results: In four experiments, ozone was associated with a significant increase in time the subject could remain in the hypoxia chamber (P< 0.05). In three control experiments without ozone, there was a significant decrease in time in the hypoxia chamber in the second run compared to the first (P <0.001). Compared to the first run there was a 32.4% increase in the proportion of time in the second run (after ozone) compared to the first run (P <0.0001). In contrast, in the three control experiments without ozone, there was significant decrease in proportion of time the subject could remain in the hypoxia chamber with an average decrease of -43.1% (P < 0.0001). Ozone therapy was associated with a significant delay in lowest oxygen desaturation (P <0.05). In contrast, in the three experimental runs without ozone there was a significant reduction in time to reach the nadir of the desaturation curve in the second run compared to that of the first (P < 0.05).


    Conclusions: Infusion of intravenous ozonated-saline significantly increases the duration of time that a subject can remain in hypoxia and delays the nadir of the oxygen de-saturation curve.

    Keywords:

    Published on: Jun 10, 2020 Pages: 46-50

    Full Text PDF Full Text HTML DOI: 10.17352/jgro.000085
    CrossMark Publons Harvard Library HOLLIS Search IT Semantic Scholar Get Citation Base Search Scilit OAI-PMH ResearchGate Academic Microsoft GrowKudos Universite de Paris UW Libraries SJSU King Library SJSU King Library NUS Library McGill DET KGL BIBLiOTEK JCU Discovery Universidad De Lima WorldCat VU on WorldCat

    Indexing/Archiving

    Pinterest on JGRO